Computer Physics Communications 110 (1998) 216-219

Computer Physics
Communications

The teraflop supercomputer APEmille: architecture, software and
project status report *

F. Aglietti®, A. Bartoloni?, C. Battista?, S. Cabasino?, M. Cosimi*, A. Michelotti?,
A. Monello?, E. Panizzi?, P.S. Paolucci®, W. Rinaldi?, D. Rossetti?®, H. Simma al
M. Torelli?, P. Vicini?, N. Cabibbo®®, W. Errico®, S. Giovannetti¢, F. Laico®,
G. Magazzi ¢, R. Tripiccione ©
3 INFN, Sezione di Roma I, piazzale A. Moro 2, I-00185 Rome, Italy

Y ENEA, Ente per le Nuove Tecnologie, I'Energia e I’Ambiente, Roma, Italy
¢ INFN, Sezione di Pisa, via Livornese 582/a, 1-56010 S. Piero a Grado, Pisa, Italy

Abstract

APEmille is a SPMD parallel processor under development at INFN, Italy, in cooperation with DESY, Germany. APEmille
is suited for grand challenges computational problems such as QCD simulations, climate modelling, neural networks,
computational chemistry, numerical wind tunnels, seismic and combustion simulations. Its 1 Teraflop/s peak performance
and its architecture, together with its language features, allow such applications to execute effectively.

APEmille is based on an array of custom arithmetic processors arranged on a tridimensional torus. The processor is
optimized for complex computations and has a peak performance of 528 Mflop at 66 MHz. Each processing element has

8 Mbytes of locally addressable RAM.

On the software side particular emphasis is devoted to the programming languages that will be available (TAO and C++)
and their object oriented, dynamic characteristics: with TAO it is possible to develop language extensions similar to the
usual HEP notation; with C++ the portability from and towards different platforms is made possible. © 1998 Published

by Elsevier Science B.V.

1. Introduction

APEmille is a parallel processor oriented to float-
ing point intensive computation and suitable for mas-
sively parallel homogeneous problems. It is a SPMD
(Single Program Multiple Data) array processor with
local addressing capability. It has a basic tridimen-
sional toroidal interconnection network implementing
first neighbour communications with low latency and

* Talk presented at CHEP97 (Berlin, April 1997).
1On leave from DESY-IfH,15735 Zeuthen, Germany.

high bandwidth. Long distance communications and
more general routing capabilities are also present, al-
though the performance is lower in these cases.
APEmille is the last generation of APE supercom-
puters family following Ape [1] and ApelQ0 [2,3].
This INFN project [4,5] aims to develop a teraflops
processor for Quantum Chromo Dynamics (QCD),
complex systems and fluid dynamics simulation and
modelling. Although APEmille performance is opti-
mized in these areas, this machine is well balanced also
for many other homogeneous problems, ¢.g. seismic
migration, atmosphere and climate modelling, compu-

0010-4655/98/$19.00 © 1998 Published by Elsevier Science B.V. All rights reserved.

PII S0010-4655(97)00180-X

F. Aglietti et al./Computer Physics Communications 110 (1998) 216-219 217

1 1 I 1 1 | 1
Pﬂgﬁﬂ
XY.Z | MEM.
busses <: Chestah
toward other I 3
Cheetahs [
[Tarzan H ?&%I

i
U

Host

BOARD

Fig. 1. The processing board block schematic.

tational chemistry, combustion simulation, and image
processing. Thus, many of the computational grand
challenges can be tackled using this architecture.

2. APEmille architecture

APEmille is a tridimensional torus of processing
elements (PE) with distributed data memory and pe-
riodic boundary conditions. Each node (PE) is di-
rectly connected to its six neighbours. A communi-
cation network establishes communications between
distant nodes. The grid of processing nodes is orga-
nized as a set of adjacent cubes of size 2 X 2 x 2 in
which the vertices corresponds to the PEs. APEmille
configurations range from a single cube to 256 cubes
with topology 32 x 8 x 8. Cubes are assembled on
Processing Boards (PB) as showed in Fig. 1.

APEmille is based on custom processors. These are
a sort of VLIW-like (Very Long Instruction Word)
processors, in which each field of the instruction word
drives a different operational block inside the proces-
sor, thereby exploiting internal parallelism.

APEmille uses a Harvard architecture, so program
memory and data memories are physically: in fact
there is one program memory, while the data memory
is distributed as each node has its own one,

There are three distinct processors: Tarzan drives
the program flow and issues the global addresses to the
PEs; Jane is the node processor, performing floating
point and integer computations; Cheetah is the com-
munication processor. Tarzan and Cheetah are repli-
cated every eight Janes.

Tarzan drives the program flow for its eight nodes
taking into account global conditions (results of its

own computations) as well as local conditions (those
computed by the Janes). Tarzan computes global ad-
dresses and delivers them to the nodes. At each clock
cycle, Tarzan can send one instruction word and one
global address to the Jane processors.

Jane is the processing element. It is a VLIW (in
the sense explained above) pipelined processor. It per-
forms a basic operation called normal (R =ax b+c)
on real (single and double precision) and complex
numbers (couples of 32 bit floating point numbers).
Jane is able to start a new normal operation at each
clock cycle. It has an eight-stage (six-stage) pipeline
for double precision (single precision). Integer com-
putations, as well as logical bitwise operations, are
performed and use a different pipe whose length is 2
clock cycles.

Jane is able to add a local offset to the global address
received from Tarzan to obtain a local address for its
data memory. Moreover, Jane can evaluate local con-
ditions, using the result to inhibit (locally) the execu-
tion of portions of code, or to participate to Tarzan's
local aggregate evaluations.

Cheetah is the communication processor. It per-
forms several kinds of internode communications:
fixed distance homogeneous communications (both
first neighbour and longer distance communications),
broadcast communications (one node or a few nodes
in different planes of the grid are data sources, while
all the others are receivers), and non-homogeneous
communications (in a second Cheetah release, which
will be plugged in APEmille that is already support-
ing them), in which each node can send (or ask for)
data to (from) a node at an arbitrary distance.

APEmille is connected to a network of conventional
PCI based computers that acts as the host computer.
There is one such computer for each subcrate (set of
32 PEs).

Three kinds of software tools will be provided with
APEmille: the language related tools (cross compilers,
optimizers, libraries), the Operating System related
tools (the monitor program and the graphic symbolic
debugger), and the Development tools (the simulator
and the graphic profiler).

218 F. Aglietti et al./Computer Physics Communications 110 (1998) 216-219

3. Hardware implementation

An APEmille cube, the building block composed of
eight processing elements, is actually a single printed
circuit board where Tarzan, Cheetah and eight Janes
are assembled. The memory banks for program and
data memories are also plugged on this board.

The APEmille custom processors are designed by
the APE Group and implemented as standard cell
ASIC design methodology.

Tarzan is capable of integer computations and has
two arithmetic units: the ALU and the AGU (Address
Generation Unit), a dedicated device for address com-
putation. Tarzan has a register file (multiport internal
RAM) with 64 register (32 bits each). It has its own
static data memory (256 KBytes static RAM) and
drives the program memory, which distribute program
words to Tarzan itself and to the Jane processors.

SDRAM (synchronous dynamic RAM) memory
technology is used for program memory. Due to the
VLIW architecture of the processors, the program
memory is 512 KWords x 160 bits each. Most of these
bits drive Jane internal devices while the remaining
ones will drive Tarzan devices.

As already remarked, Jane is used for integer and
floating point computations. It has a 512-deep register
file with five ports. The register file based architecture
allows one normal and one I/O operation at each
clock cycle. JANE’s data memory, based on SDRAM
technology, ranges from 2 to 8 MWord/node (from 8
to 32 MBytes/node).

Jane complies with the IEEE standard for floating
point numbers and delays the rounding of a x b to after
the sum, i.e. it rounds only the result of (the infinitely
precise) a x b +c.

Cheetah is a bitsliced device: four identical chips
are required on each board to drive the communication
of the 32 bit words exchanged among the Janes. Each
chip manages one fourth of the word.

The APEmille clock frequency is 66 MHz. When
dealing with complex arithmetics where a normal op-
eration consists in 8 floating point operations, Jane’s
peak power is 528 Mflop/s. Performances for the dif-
ferent configurations scale linearly: 4 Gflops for a sin-
gle board and 1.081 Tflops for the full APEmille con-
figuration. The PCI interface (named APEnic) will
provide an I/0 bandwidth of 133 MB/s.

4. Languages and programmability

The main constraint when dealing with code de-
velopers who are scientists rather than professional
programmers is that they prefer to concentrate on the
physical problem and the algorithm used to solve it
rather than on the details of its program implementa-
tion.

We are trying to build an user-friendly environment
for this class of users in two different ways:

— implementing standard languages - although with
some nonstandard features linked to the nonstan-
dard architecture; these are necessary to let people
reuse code developed on different platforms;

— designing new languages that try to solve some
problems associated with the new general purpose
languages.

To satisfy these constraints, we planned to implement

two languages on this machine: the C+4 language

and the TAO language.

The C++ compiler will have some extensions to
exploit APEmille features; at the same time, in its first
release, it will partially implement the standard.

The TAO language is the language that we designed
already for Apel00, and that we are now refining for
APEmille.

We are developing PICO, a machine independent
optimizer which will be the core of the APEmille high
level language compilers.

TAO is an extensible language which has Fortran
flavour but, as its main characteristic, allows the user to
define new operators and new statements or overload
old ones. Using the TAO language in its native form
still remains possible and it becomes very natural to
mix the new statements and operators to the basic ones
to produce compact but expressive code. An example
of extension, on which we spent much effort, is the
QCD header file which extends the TAO language with
data structures and operators used in QCD simulations.

5. APEmille status report

The hardware and software architecture of the ma-
chine is fully defined and custom processors descrip-
tion is almost completed.

The APEmille simulator, named JUNGLE, is now
able to simulate the whole machine in very deep detail

F. Aglietti et al. /Computer Physics Communications 110 (1998) 216-219 219

allowing APEmille users to develop code and evaluate
performance of the real machine.

The physical components of APEmille (VLSI de-
vices, board architecture and PCI interface) were de-
scribed using the VHDL language which is easily in-
terfaced with the JUNGLE simulator to test the elec-
trical behaviour of the APEmille devices.

The prototypes of the APEnic PCI interface and
of the backplane as well as a “test board”, a reduced
APEmille processing board useful to test technology
solutions, will be completed and tested soon.

The whole APEmille supercomputer will be assem-
bled in two step: from the beginning of 1998, we will
produce and test a 256 nodes system (first APEmille
prototype) followed, in a few months, by the assem-
bly of the whole APEmille system.

References

[1] P. Bacilieri et al., The APE project: a gigaflop paraller
processor for lattice calculations, in: Computing in High
Energy Physics 85 (Elsevier Science, North-Holland, 1986).

[2] A. Bartoloni et al., A hardware implementation of the Apel00
architecture, Int. J. Mod. Phys. C 4 (1993) 995

[3] A. Bartoloni et al., The software of the Apel00 processor,
Int. J. Mod. Phys. C 4 (1993) 969

[4] A. Bartoloni et al., APEmille Proposal, INFN internal
document (1994).

[5) A. Bartoloni et al., Addendum to the APEmille Proposal,
INFN internal document (1995).

